Latex Formatted Equations for Algebraic Physics

I struggled with getting my formulas to look correct when they were printed out for years. I started using a markup language called LaTeX to consistently format my formulas and have been very happy with the results. Here are the markups for the formulas I use in my class. If you think I’m missing one that would be used in a conceptual / general physics class please use the contact form and let me know. I’d love to add it to my list

Equations by Category
Speed and Velocity

[latex]

Speed\rightarrow S(\frac{m}s)=\frac{\displaystyle Distance(m)}{\displaystyle Time(s)}
[latex]Speed\rightarrow S(\frac{m}s)=\frac{\displaystyle Distance(m)}{\displaystyle Time(s)}[/latex]
Speed\rightarrow S=\frac{\displaystyle D}{\displaystyle T}
[latex]Speed\rightarrow S=\frac{\displaystyle D}{\displaystyle T}[/latex]
Time\rightarrow T=\frac{\displaystyle D}{\displaystyle S}
[latex]Time\rightarrow T=\frac{\displaystyle D}{\displaystyle S}[/latex]
Distance\rightarrow D=S*T
[latex]Distance\rightarrow D=S*T[/latex]
Velocity\rightarrow V(\frac{m}s)=\frac{\displaystyle Displacement(m)}{\displaystyle Time(s)}
[latex]Velocity\rightarrow V(\frac{m}s)=\frac{\displaystyle Displacement(m)}{\displaystyle Time(s)}[/latex]
Velocity\rightarrow V=\frac{\displaystyle D}{\displaystyle T}
[latex]Velocity\rightarrow V=\frac{\displaystyle D}{\displaystyle T}[/latex]
Time\rightarrow T=\frac{\displaystyle D}{\displaystyle V}
[latex]Time\rightarrow T=\frac{\displaystyle D}{\displaystyle V}[/latex]
Displacement\rightarrow D=V*T
[latex]Displacement\rightarrow D=V*T[/latex]
Acceleration
Acceleration = \frac{\displaystyle Velocity_{final} - Velocity_{initial}}{\displaystyle Time}
[latex]Acceleration = \frac{\displaystyle Velocity_{final} - Velocity_{initial}}{\displaystyle Time}[/latex]
Acceleration \rightarrow A = \frac{\displaystyle V_f - V_i}{\displaystyle T_i}
[latex]Acceleration \rightarrow A = \frac{\displaystyle V_f - V_i}{\displaystyle T_i}[/latex]
Final\hspace{.1cm}Velocity \rightarrow V_f = V_i+(A*T)
[latex]Final\hspace{.1cm}Velocity \rightarrow V_f = V_i+(A*T)[/latex]
Displacement \rightarrow D=D_i+(V_i*T)+(\frac12AT^2)
[latex]Displacement \rightarrow D=D_i+(V_i*T)+(\frac12AT^2)[/latex]
Final\hspace{.1cm} Velocity\hspace{.1cm} (Without\hspace{.1cm}being\hspace{.1cm} given\hspace{.1cm} time) \rightarrow V^2=V_i^2+2A(D_f-D_i)
[latex]Final\hspace{.1cm} Velocity\hspace{.1cm} (Without\hspace{.1cm}being\hspace{.1cm} given\hspace{.1cm} time) \rightarrow V^2=V_i^2+2A(D_f-D_i)[/latex]
Force
Force \rightarrow Force=Mass*Acceleration
[latex]Force \rightarrow Force=Mass*Acceleration[/latex]
Force \rightarrow F=M*A
[latex]Force \rightarrow F=M*A[/latex]
Mass\rightarrow M= \frac{\displaystyle F }{\displaystyle A}
[latex]Mass\rightarrow M= \frac{\displaystyle F }{\displaystyle A}[/latex]
Acceleration \rightarrow A= \frac{\displaystyle F }{\displaystyle M}
[latex]Acceleration \rightarrow A= \frac{\displaystyle F }{\displaystyle M}[/latex]
Momentum
Momentum\rightarrow Momentum=Mass*Velocity
[latex]Momentum\rightarrow Momentum=Mass*Velocity[/latex]
Momentum \rightarrow P=M*V
[latex]Momentum \rightarrow P=M*V[/latex]
Mass\rightarrow M= \frac{\displaystyle P }{\displaystyle V}
[latex]Mass\rightarrow M= \frac{\displaystyle P }{\displaystyle V}[/latex]
Velocity \rightarrow V= \frac{\displaystyle P }{\displaystyle M}
[latex]Acceleration \rightarrow A= \frac{\displaystyle F }{\displaystyle M}[/latex]
2 Dimensional Motion
Horizontal\hspace{.1cm}Distance \rightarrow X=V_x*T
[latex]Horizontal\hspace{.1cm}Distance \rightarrow X=V_x*T[/latex]
Horizontal\hspace{.1cm}Velocity \rightarrow V_{Xf}=V_{xi}
[latex]Horizontal\hspace{.1cm}Velocity \rightarrow V_{Xf}=V_{xi}[/latex]
Vertical\hspace{.1cm}Distance \rightarrow Y=V_{yo}T-\frac12GT^2
[latex]Vertical\hspace{.1cm}Distance \rightarrow Y=V_{yo}T-\frac12GT^2[/latex]
Vertical\hspace{.1cm}Velocity \rightarrow V_{Yf}=V_{Yi}-G*T
[latex]Vertical\hspace{.1cm}Velocity \rightarrow V_{Yf}=V_{Yi}-G*T[/latex]
Time\hspace{.1cm}of\hspace{.1cm}Flight \rightarrow T=\frac{\displaystyle 2V_isin\theta}{\displaystyle G}
[latex]Time\hspace{.1cm}of\hspace{.1cm}Flight \rightarrow T=\frac{\displaystyle 2V_isin\theta}{\displaystyle G}[/latex]
Maximum\hspace{.1cm}Height\hspace{.1cm}Reached \rightarrow H=\frac{\displaystyle V_i^2sin^2\theta}{\displaystyle 2G}
[latex]Maximum\hspace{.1cm}Height\hspace{.1cm}Reached \rightarrow H=\frac{\displaystyle V_i^2sin^2\theta}{\displaystyle 2G}[/latex]
Horizontal\hspace{.1cm}Range \rightarrow R=\frac{\displaystyle V_i^2sin2\theta}{\displaystyle G}
[latex]Horizontal\hspace{.1cm}Range \rightarrow R=\frac{\displaystyle V_i^2sin2\theta}{\displaystyle G}[/latex]
Conservation of Momentum
Conservation\hspace{.1cm}Of\hspace{.1cm}Momentum\hspace{.1cm}(Elastic) \rightarrow m_1u_1+m_2u_2=m_1v_1+m_2v_2
[latex]Conservation\hspace{.1cm}Of\hspace{.1cm}Momentum\hspace{.1cm}(Elastic) \rightarrow m_1u_1+m_2u_2=m_1v_1+m_2v_2[/latex]
Conservation\hspace{.1cm}Of\hspace{.1cm}Momentum\hspace{.1cm}(Inelastic) \rightarrow m_1u_1+m_2u_2=(m_1+m_2)*V_f
[latex]Conservation\hspace{.1cm}Of\hspace{.1cm}Momentum\hspace{.1cm}(Inelastic) \rightarrow m_1u_1+m_2u_2=(m_1+m_2)*V_f[/latex]
Work and Power
Work \rightarrow Work=Force*Distance
[latex]Work \rightarrow Work=Force*Distance[/latex]
Work \rightarrow W=F*D
[latex]Force \rightarrow F=M*[/latex]
Force\rightarrow F= \frac{\displaystyle W }{\displaystyle D}
[latex]Force \rightarrow F= \frac{\displaystyle W }{\displaystyle D}[/latex]
Distance \rightarrow D= \frac{\displaystyle W }{\displaystyle F}
[latex]Distance\rightarrow D= \frac{\displaystyle W }{\displaystyle F}[/latex]
Power\rightarrow P(W)=\frac{\displaystyle Work(J)}{\displaystyle Time(s)}
[latex]Power\rightarrow P(W)=\frac{\displaystyle Work(J)}{\displaystyle Time(s)}[/latex]
Power\rightarrow P=\frac{\displaystyle W}{\displaystyle T}
[latex]Power\rightarrow P=\frac{\displaystyle W}{\displaystyle T}[/latex]
Time\rightarrow T=\frac{\displaystyle W}{\displaystyle P}
[latex]Time\rightarrow T=\frac{\displaystyle W}{\displaystyle P}[/latex]
Work\rightarrow W=P*T
[latex]Work \rightarrow W=P*T[/latex]
Energy
Gravitational\hspace{.1cm}Potential\hspace{.1cm}Energy \rightarrow GPE=mass*Gravity*height
[latex]Gravitational\hspace{.1cm}Potential\hspace{.1cm}Energy \rightarrow GPE=mass*Gravity*height[/latex]
Kinetic\hspace{.1cm}Energy \rightarrow KE = \frac{\displaystyle 1}{\displaystyle 2}MV^2
[latex]Kinetic\hspace{.1cm}Energy \rightarrow KE = \frac{\displaystyle 1}{\displaystyle 2}MV^2[/latex]
Ohm's Law and Electrical Power
Ohm's\hspace{.1cm}Law \rightarrow Current=\frac{\displaystyle Voltage}{\displaystyle Resistance}
[latex]Ohm's Law \rightarrow Current=\frac{\displaystyle Voltage}{\displaystyle Resistance}[/latex]
Current \rightarrow I=\frac{\displaystyle V}{\displaystyle R}
[latex]Current\rightarrow I=\frac{\displaystyle V}{\displaystyle R}[/latex]
Resistance \rightarrow R=\frac{\displaystyle V}{\displaystyle I}
[latex]Resistance \rightarrow R=\frac{\displaystyle V}{\displaystyle I}[/latex]
Voltage\rightarrow V=I*R
[latex]Voltage\rightarrow V=I*R[/latex]
Power \rightarrow Power=Current*Voltage
[latex]Power \rightarrow Power=Current*Voltage[/latex]
Power \rightarrow P=I*V
[latex]Power \rightarrow P=I*V[/latex]
Current\rightarrow I=\frac{\displaystyle P}{\displaystyle V}
[latex]Current\rightarrow I=\frac{\displaystyle P}{\displaystyle V}[/latex]
Voltage \rightarrow V=\frac{\displaystyle P}{\displaystyle I}
[latex]Voltage \rightarrow V=\frac{\displaystyle P}{\displaystyle I}[/latex]
Resistance\hspace{.1cm}in\hspace{.1cm}Series\rightarrow R_T=R_1+R_2+R_3...
[latex]Resistance\hspace{.1cm}in\hspace{.1cm}Series\rightarrow R_T=R_1+R_2+R_3...[/latex]
Resistance\hspace{.1cm}in\hspace{.1cm}Parallel \rightarrow \frac{\displaystyle 1}{\displaystyle R_T}=\frac{\displaystyle 1}{\displaystyle R_1}+\frac{\displaystyle 1}{\displaystyle R_2}+\frac{\displaystyle 1}{\displaystyle R_3}...
[latex]Resistance\hspace{.1cm}in\hspace{.1cm}Parallel \rightarrow \frac{\displaystyle 1}{\displaystyle R_T}=\frac{\displaystyle 1}{\displaystyle R_1}+\frac{\displaystyle 1}{\displaystyle R_2}+\frac{\displaystyle 1}{\displaystyle R_3}...[/latex]
Waves
Frequency \rightarrow Frequency = \frac{\displaystyle 1}{\displaystyle period}
[latex]Frequency \rightarrow F = \frac{\displaystyle 1}{\displaystyle period}[/latex]
Frequency \rightarrow F = \frac{\displaystyle 1}{\displaystyle T}
[latex]Frequency \rightarrow F = \frac{\displaystyle 1}{\displaystyle T}[/latex]
Period \rightarrow Period = \frac{\displaystyle 1}{\displaystyle Frequency}
[latex]Period \rightarrow Period = \frac{\displaystyle 1}{\displaystyle Frequency}[/latex]
Period \rightarrow T= \frac{\displaystyle 1}{\displaystyle F}
[latex]Period \rightarrow T= \frac{\displaystyle 1}{\displaystyle F}[/latex]
Print Friendly, PDF & Email